Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(5): 103631, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38537404

RESUMO

Extended-spectrum-ß-lactamases (ESBLs)-producing Escherichia coli conferred resistance to most ß-lactams, except for carbapenems. To date, the transmission mechanism of blaCTX-M, as the most common ESBLs subtype, in E. coli has received sustained attention around the worldwide, but the research on the pathogenicity of blaCTX-M-bearing E. coli is still scarce. The aims of this study were to discern the spread characteristics of ColV (encoding colicin V) plasmids in blaCTX-M-positive E. coli. The multi-drug resistance traits, phylogroups, and ColV plasmid profilings were screened in 76 blaCTX-M-positive E. coli. Thereafter, the genetic profiles of E. coli G12 and GZM7 were determined by whole genome sequencing, conjugation and S1-pulsed-field gel electrophoresis. The median lethal dose was analyzed in E. coli G12 and TG12A, the ColV-plasmid transconjugant of G12. Of all 76 blaCTX-M-bearing E. coli, 67.11% exhibited resistance to at least 2 drugs in addition to ceftiofur, 14.47% carried ColV-positive plasmids, and 53.95% were phylogroup C. Further studies demonstrated that the blaCTX-M-bearing E. coli G12 was assigned to the predominant lineage O78:H4-ST117 of phylogroup G. In addition, its ColV-positive plasmid simultaneously carried multiple resistance genes, and could be independently transferred to confer partial pathogenicity on its host by plasmid mating. E. coli GZM7 was O53:H9-ST23 of phylogroup C, which belonged to another representative lineage of APEC (avian pathogenic E. coli). Its ColV-positive plasmid could complete conjugation with the help of the other coexisting-resistance conjugative plasmid, although it failed to transfer alone. Our findings highlight the flexibly horizontal transfer of ColV plasmids along with multidrug-resistant genes among blaCTX-M-bearing E. coli poses a threat to poultry health and food safety, which contributes to elucidate the concept of "One Health" and deserves particular concern.

2.
Microbiol Spectr ; 12(4): e0391823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441474

RESUMO

The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Azitromicina/farmacologia , Colistina/farmacologia , Regulação para Cima , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Porinas/genética , Porinas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/metabolismo
3.
mSphere ; 8(5): e0023423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747188

RESUMO

The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.


Assuntos
Colistina , Rafoxanida , Humanos , Animais , Suínos , Colistina/farmacologia , Rafoxanida/farmacologia , Klebsiella pneumoniae , Espécies Reativas de Oxigênio , Cromossomos , Trifosfato de Adenosina
4.
Microbiol Spectr ; 11(4): e0053023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358428

RESUMO

With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.


Assuntos
Agmatina , Colistina , Colistina/farmacologia , Salmonella typhimurium/genética , Transcriptoma , Agmatina/farmacologia , Ácidos Cetoglutáricos/farmacologia , Antibacterianos/farmacologia , Metaboloma , Testes de Sensibilidade Microbiana
5.
Res Microbiol ; 174(7): 104078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149078

RESUMO

Aim of this study was to investigate the prevalence and genetic environment of the oxazolidinone resistance gene optrA in Streptococcus suis (S. suis) isolates from diseased pigs in China. A total of 178 S. suis isolates were screened for the optrA gene by PCR. The phenotypes and genotypes of optrA-positive isolates were investigated by antimicrobial susceptibility testing, core genome Multilocus Sequence Typing (cgMLST), capsular serotypes determination and whole-genome sequencing (WGS). Fifty-one (28.7%) S. suis isolates were positive for optrA. Phylogenetic analysis indicated that the spread of the optrA among S. suis isolates was primarily due to horizontal transfer. Analysis of S. suis serotypes from diseased pigs revealed substantial diversity. The genetic environment of optrA was complex and diverse and could be divided into 12 different types. Interestingly, we identified a novel integrative and conjugative element ICESsu988S, carrying optrA and erm(T) genes. This is to the best of our knowledge the first report of the optrA and erm(T) co-located on an ICE in S. suis. Our results showed a high prevalence of optrA gene in S. suis isolates in China. Further research is needed to evaluate the importance of ICEs, as they horizontally propagate important clinical resistance genes.


Assuntos
Oxazolidinonas , Streptococcus suis , Animais , Suínos , Streptococcus suis/genética , Filogenia , Prevalência , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
6.
Poult Sci ; 102(6): 102640, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068352

RESUMO

This study was designed to depict prevalence and antimicrobial resistance characteristics of Proteus mirabilis (P. mirabilis) strains in 4 chicken farms and to probe the transfer mechanism of resistance genes. A total of 187 P. mirabilis isolates were isolated from 4 chicken farms. The susceptibility testing of these isolates to 14 antimicrobials showed that the multidrug resistance (MDR) rate was as high as 100%. The ß-lactamase resistance genes blaOXA-1, blaCTX-M-1G, blaCTX-M-9G and colistin resistance gene mcr-1 were highly carried in the P. mirabilis isolates. An MDR strain W47 was selected for whole genome sequencing (WGS) and conjugation experiment. The results showed that W47 carried 23 resistance genes and 64 virulence genes, and an SXT/R391 integrated conjugative elements (ICEs) named ICEPmiChn5 carrying 17 genes was identified in chromosome. ICEPmiChn5 was able to be excised from the chromosome of W47 forming a circular intermediate, but repeated conjugation experiments were unsuccessful. Among 187 P. mirabilis isolates, 144 (77.01%, 144/187) isolates carried ICEPmiChn5-like ICEs, suggesting that ICEs may be the major vector for the transmission of resistance genes among MDR chicken P. mirabilis strains in this study. The findings were conducive to insight into the resistance mechanism of chicken P. mirabilis strains and provide a theoretical basis for the use of antibiotics for the treatment of MDR P. mirabilis infections in veterinary clinic.


Assuntos
Galinhas , Proteus mirabilis , Animais , Proteus mirabilis/genética , Fazendas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/veterinária
7.
Int J Antimicrob Agents ; 61(4): 106740, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736498

RESUMO

ICEGpa1804 was identified in the genome of a serovar 2, ST279 isolate EHP1804 carrying eight different resistance genes from 200 Glaesserella parasuis strains isolated from swine with lower respiratory tract infection in seven provinces of China. Susceptibility testing for EHP1804 was determined by broth microdilution, and its genetic profile was determined by whole-genome sequencing. The complete ICEGpa1804 was analysed by polymerase chain reaction, conjugation assay and bioinformatics tools. The conjugation assay was performed using EHP1804 as the donor and G. parasuis V43 (rifampicin-resistant) as the recipient. ICEGpa1804 has a size of 71,880 bp and contains 83 genes, including eight resistance genes [tet(B), blaRob-1, aphA1, strA, strB, aac(3)-IId, catA3 and sul2]. The conjugation assay showed that ICEGpa1804 could be transferred to G. parasuis V43 with frequencies of 4.3 × 10-7. To the best of the authors' knowledge, this is the first study to identify a novel integrative and conjugative element (ICE) carrying eight resistance genes and seven insertion sequence (IS) elements from a G. parasuis isolate. Tn6743, a novel transposon carrying six resistance genes, was identified. Moreover, ISGpa1, a novel IS256 family insertion element, is the first characterized example of a G. parasuis insertion element. Multiple mobile genetic elements involved in resistance genes were located in chromosomal ICEGpa1804, which showed that ICEs may serve as a vital platform for the accumulation of resistance genes.


Assuntos
Haemophilus parasuis , Infecções Respiratórias , Animais , Suínos , Elementos de DNA Transponíveis , Sequenciamento Completo do Genoma , China , Haemophilus parasuis/genética , Conjugação Genética
8.
Appl Environ Microbiol ; 89(3): e0176422, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36809063

RESUMO

In Chinese zoos, there are usually specially designed bird parks, similar to petting zoos, that allow children and adults to interact with diverse birds. However, such behaviors present a risk for the transmission of zoonotic pathogens. Recently, we isolated eight strains of Klebsiella pneumoniae and identified two blaCTX-M-positive strains from 110 birds, including parrots, peacocks, and ostriches, using anal or nasal swabs in a bird park of a zoo in China. There, K. pneumoniae LYS105A was obtained from a diseased peacock with chronic respiratory diseases by a nasal swab, which harbored the blaCTX-M-3 gene and exhibited resistance to amoxicillin, cefotaxime, gentamicin, oxytetracycline, doxycycline, tigecycline, florfenicol, and enrofloxacin. According to an analysis by whole-genome sequencing, K. pneumoniae LYS105A belongs to serotype ST859 (sequence type 859)-K19 (capsular serotype 19) and contains two plasmids, of which pLYS105A-2 can be transferred by electrotransformation and harbors numerous resistance genes such as blaCTX-M-3, aac(6')-Ib-cr5, and qnrB91. The above-mentioned genes are located in a novel mobile composite transposon, Tn7131, which makes horizontal transfer more flexible. Although no known genes were identified in the chromosome, a significant increase in SoxS upregulated the expression levels of phoPQ, acrEF-tolC, and oqxAB, which contributed to strain LYS105A acquiring resistance to tigecycline (MIC = 4 mg/L) and intermediate resistance to colistin (MIC = 2 mg/L). Altogether, our findings show that bird parks in zoos may act as important vehicles for the spread of multidrug-resistant bacteria from birds to humans and vice versa. IMPORTANCE A multidrug-resistant ST859-K19 K. pneumoniae strain, LYS105A, was obtained from a diseased peacock in a Chinese zoo. In addition, multiple resistance genes such as blaCTX-M-3, aac(6')-Ib-cr5, and qnrB91 were located in a novel composite transposon, Tn7131, of a mobile plasmid, implying that most of the resistance genes in strain LYS105A can be moved easily via horizontal gene transfer. Meanwhile, an increase in SoxS can further positively regulate the expression of phoPQ, acrEF-tolC, and oqxAB, which is the key factor for strain LYS105A to develop resistance to tigecycline and colistin. Taken together, these findings enrich our understanding of the horizontal cross-species spread of drug resistance genes, which will help us curb the development of bacterial resistance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Colistina , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/veterinária , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Tigeciclina/farmacologia , Animais , Aves/microbiologia
9.
Poult Sci ; 102(2): 102346, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493546

RESUMO

The emergence and rapid spread of multidrug resistant (MDR) Gram-negative bacteria have posed a serious threat to global health and security. Because of the time-consuming, high cost and high risk of developing new antibiotics, a significant method is to use antibiotic adjuvants to revitalize the existing antibiotics. The purpose of the study is to research the traditional Chinese medicine baicalin with the function of inhibiting the efflux pump and EDTA whether their single or combination can increase the activity of colistin against colistin-resistant Salmonella in vitro and in vivo, and to explore its molecular mechanisms. In vitro antibacterial experiments, we have observed that baicalin and EDTA alone could enhance the antibacterial activity of colistin. At the same time, the combination of baicalin and EDTA also showed a stronger synergistic effect on colistin, reversing the colistin resistance of all Salmonella strains. Molecular docking and RT-PCR results showed that the combination of baicalin and EDTA not only affected the expression of mcr-1, but also was an effective inhibitor of MCR-1. In-depth synergistic mechanism analysis revealed that baicalin and EDTA enhanced colistin activity through multiple pathways, including accelerating the tricarboxylic acid cycle (TCA cycle), inhibiting the bacterial antioxidant system and lipopolysaccharide (LPS) modification, depriving multidrug efflux pump functions and attenuating bacterial virulence. In addition, the combinational therapy of colistin, baicalin and EDTA displayed an obvious reduction in bacterial loads cfus of liver and spleen compared with monotherapy and 2-drug combination therapy. In conclusion, our study indicates that the combination of baicalin and EDTA as a novel colistin adjuvant can provide a reliable basis for formulating the therapeutic regimen for colistin resistant bacterial infection.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Ácido Edético/farmacologia , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana/veterinária , Simulação de Acoplamento Molecular , Salmonella
10.
J Antimicrob Chemother ; 78(1): 216-224, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374526

RESUMO

BACKGROUND: Fosfomycin is an important broad-spectrum bactericidal antibiotic to treat multidrug-resistant bacteria infections. It is generally accepted that heteroresistant bacteria are an intermediate stage in the formation of drug resistance, but there are few studies on the formation mechanism underlying fosfomycin heteroresistance (FHR). OBJECTIVES: To reveal the characteristics and formation mechanisms of FHR in Escherichia coli isolates obtained from chickens. METHODS: We identified the FHR according to the population analysis profile (PAP) test and in vitro time-kill assay. Growth curves for FHR E. coli and their subpopulations were measured. Also, the subpopulations were repeatedly cultured in fosfomycin-free medium for 5-20 overnight incubation periods. The formation mechanisms of FHR in E. coli isolates were identified through accumulation assay, carbohydrate utilization testing, real-time relative quantitative PCR analysis, DNA sequencing, transcriptomic analysis, intracellular ATP and cAMP-level assessment. RESULTS: Four of six E. coli strains were confirmed to show FHR, with a total of six subpopulations. The subpopulations restored phenotypic susceptibilities to fosfomycin within 5-20 overnight incubation sessions, but four of six subpopulations still maintained FHR characteristics. Differing from their parental isolates, the uptake of fosfomycin in the subpopulations through GlpT was reduced remarkably. Further studies identified that the low expression of glpT was due to the decrease of intracellular cAMP levels in the subpopulations, which was caused by the decreased ATP levels in cells. CONCLUSIONS: Our findings revealed the formation mechanism of E. coli isolates showing FHR obtained from chicken in China and characterized the dynamic change traits in vitro of the subpopulations.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfomicina , Animais , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Escherichia coli , AMP Cíclico/metabolismo , AMP Cíclico/uso terapêutico , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Galinhas , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/microbiologia , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
11.
Plasmid ; 123-124: 102651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36191658

RESUMO

To characterize IncI1 and IncF18:A-:B1 multidrug-resistance plasmids from an avian Escherichia coli isolate, antibiotic susceptibility testing, conjugation assays, transformation assays, S1-PFGE, and WGS analysis were performed. The 119,457-bp plasmid pEC014-1 with a multidrug-resistance region (MRR) containing four different segments interspersed with six IS26 elements, belonged to incompatibility group I1 and sequence type 71. The 154,516-bp plasmid pEC014-2 with two replicons, typed as FII-18 and FIB-1, carried 14 resistance determinants including blaTEM-1b, blaOXA-1, oqxAB, dfrA17, aac(6')-Ib-cr, sul1, sul2, tet(A), floR, catB3, hph(aph(4)-Ia), aacC4(aac(3)-IV), aadA5, arr-3, and a merEDACPTR loci in MRR, and additionally encoded three virulence loci: iroNEDCB, sitABCD, and iucABCD-iutA. Plasmid stability assays showed that pEC014-1 and pEC014-2 were stable in recipient E. coli C600 for at least 15 days of passage. Competition assays were carried out to evaluate the fitness impact of pEC014-2 carriage in vitro, revealing a decrease in host fitness. Growth kinetics showed that the growth rate for pEC014-1 or/and pEC014-2 bearing cells was significantly slower than that of the E. coli C600 host strain in the exponential stage (p < 0.01), with only cells carrying pEC014-1 sustaining rapid growth after 6 h of exponential growth. Our findings highlight the mosaic structures of epidemic plasmid IncI1/ST71 and F18:A-:B1 lineages and contribute to a better understanding of the evolution and dissemination of these multidrug resistance and virulence plasmids.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Plasmídeos/genética , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/epidemiologia , Resistência a Múltiplos Medicamentos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética
12.
Front Vet Sci ; 9: 986824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061114

RESUMO

Integrative conjugative elements (ICEs) are important carriers for disseminating resistance genes. We have previously reported a novel element ICEHpa1 carrying seven antibiotic resistance genes, which could be self-transmissible relying on the novel T4SS. To identify novel ICEHpa1 variants from 211 strains and novel T4SS encoded in ICEHpa1, and to explore the relationships in these ICEs, four complete sequences of ICEs were identified by WGS analysis and antimicrobial susceptibility testing was determined by broth microdilution. In addition, a comparative analysis of these ICEs was conducted with bioinformatic tools, and the transfer abilities of these ICEs were confirmed by conjugation. Four ICEHpa1 variants ICEGpa1818, ICEGpa1808, ICEGpa1807, and ICEGpa1815 with different resistance gene profiles were characterized, and their hosts showed different resistance spectrums. All ICEs shared the same backbone and were inserted into the tRNALeu site, and all resistance regions were inserted into the same target site between the accessory and integration regions. This study analyzed complete sequences of ICEs from the ICEHpa1 family and identified novel T4SS and insertion element ISGpa2. Diverse resistance genes extensively exist in these ICEs, serving as a reservoir for resistance genes and facilitating their dissemination.

13.
Res Vet Sci ; 150: 98-106, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35809419

RESUMO

CpxAR is a global regulatory protein and has important roles in plasmid mating. However, except for traJ, the regulatory effect of CpxAR on other tra genes is unclear. The aim of this study was to explore the effects of CpxAR on conjugative transfer of the epidemic plasmid pEC011 (IncFII replicon) in Escherichia coli. The plasmid mating frequencies were significantly higher for the single deletion mutant strain FΔcpxR than for the parental strain F25922. Additionally, expression levels of traM, traJ and traY in FΔcpxR were significantly higher than those in F25922. Further investigations revealed that His6-CpxR protein could directly bind to the traM, traJ and traY promoter regions with the binding sites of 5'-TTTACATT-3' (PM), 5'-ATAAGAAT-3' (PJ), and 5'-AATTTTAT-3' (PY), respectively. Taken together, our results demonstrate that CpxAR can downregulate the expression of traM, traJ and traY by directly binding to the CpxR box-like sites of promoters, thus significantly reducing the mating rates of IncFII replicon plasmid pEC011.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator F , Plasmídeos/genética , Regiões Promotoras Genéticas , Replicon
14.
Microbiol Spectr ; 10(3): e0026522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35510850

RESUMO

Antimicrobial resistance in Morganella morganii is increasing in recent years, which is mainly introduced via extra genetic and mobile elements. The aim of our study is to analyze the multidrug resistance (MDR) and characterize the mobile genetic elements (MGEs) in M. morganii isolates. Here, we report the characteristic of a pathogenic M. morganii isolate containing multidrug resistance genes that are mainly carried by a novel transposon Tn7376 and a genomic island. Sequence analysis suggested that the Tn7376 could be generated through homologous recombination between two different IS26-bounded translocatable units (TUs), namely, module A (IS26-Hp-IS26-mph(A)-mrx(A)-mphR-IS6100-chrA-sul1-qacEΔ1) and module B (ISCR1-sul1-qacEΔ1-cmlA1-aadA1-aadB-intI1-IS26), and the genomic island named MMGI-4 might derive from a partial structure of different original genomic islands that also carried IS26-mediated TUs. Notably, a 2,518-bp sequence linked to the module A and B contains a 570-bp dfrA24 gene. To the best of our knowledge, this is the first report of the novel Tn7376 possessing a complex class 1 integron that carried an infrequent gene dfrA24 in M. morganii. IMPORTANCE Mobile genetic elements (MGEs), especially for IS26-bounded translocatable units, may act as a reservoir for a variety of antimicrobial resistance genes in clinically important pathogenic bacteria. We expounded this significant genetic characteristic by investigating a representative M. morganii isolate containing multidrug resistance genes, including the infrequent dfrA24. Our study suggested that these acquired resistance genes were mainly driven by IS26-flanked important MGEs, such as the novel Tn7376 and the MMGI-4. We demonstrated that IS26-related MGEs contributed to the emergence of the extra gene dfrA24 in M. morganii through some potential genetic events like recombination, transposition, and integration. Therefore, it is of importance to investigate persistently the prevalence these MEGs in the clinical pathogens to provide risk assessment of emergence and development of novel resistance genes.


Assuntos
Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla , Ilhas Genômicas , Morganella morganii , Antibacterianos , Farmacorresistência Bacteriana Múltipla/genética , Genes MDR , Integrons/genética , Morganella morganii/genética
15.
Biomed Pharmacother ; 149: 112873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35349932

RESUMO

It has been recognized that colistin resistance is a growing problem that seriously impairs the clinical efficacy of colistin against bacterial infections. One strategy that has been proven to have therapeutic effect is to overcome the widespread emergence of antibiotic-resistant pathogens by combining existing antibiotics with promising non-antibiotic agents. In this work, antibiotic susceptibility testing, checkerboard assays and time-kill curves were used to investigate the antibacterial activity of the individual drugs and the potential synergistic activity of the combination. The molecular mechanisms of tetrandrine in combination with colistin were analyzed using fluorometric assay and Real-time PCR. To predict possible interactions between tetrandrine and MCR-1, molecular docking assay was taken. Finally, we evaluated the in vivo efficacy of tetrandrine in combination with colistin against MCR-positive Salmonella. Overall, the combination of tetrandrine and colistin showed significant synergistic activity. In-depth mechanistic analysis showed that the combination of tetrandrine with colistin enhances the membrane-damaging ability of colistin, undermines the functions of proton motive force (PMF) and efflux pumps in MCR-positive bacteria. The results of molecular docking and RT-PCR analyses showed that tetrandrine not only affects the expression of mcr-1 but is also an effective MCR-1 inhibitor. Compared with colistin monotherapy, the combination of tetrandrine with colistin significantly reduced the bacterial load in vivo. Our findings demonstrated that tetrandrine serves as a potential colistin adjuvant against MCR-positive Salmonella.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Benzilisoquinolinas , Colistina/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Salmonella/genética , Salmonella/metabolismo
16.
Microbiol Spectr ; 10(1): e0196321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170998

RESUMO

Streptococcus suis strain 1112S was isolated from a diseased pig in a feedlot from Henan, China, in 2019. The isolate harbored a linezolid resistance gene optrA. WGS data revealed that the optrA gene was associated with a single copy ETAf ISS1S, in tandem with erm(B) and tet(O), located in a novel 72,587 bp integrative and conjugative element (ICE). Notably, this novel element, designated ICESsu1112S, also carried a novel bacitracin resistance locus. ICESsu1112S could be excised from chromosome and transferred to the recipient strain S. suis P1/7 with a frequency of 5.9 × 10-6 transconjugants per donor cell. This study provided the first description of the coexistence of optrA and a novel bacitracin locus on a multiple antibiotic resistant ICE and highlighted that ICE were major vehicle and contribute to the potential transfer of clinically relevant antibiotic resistance genes. IMPORTANCE Antimicrobial resistance (AMR) caused by the imprudent use of antimicrobials has become a global problem, which poses a serious threat to treatment of S. suis infection in pigs and humans. Importantly, AMR genes can horizontally spread among commensal organisms and pathogenic microbiota, thereby accelerating the dissemination of AMR determinants. These transfers are mainly mediated by mobile genetic elements, including ICEs. In S. suis, ICEs are the major vehicles that contribute to the natural transfers of AMR genes among different bacterial pathogens. However, ICEs that carry optrA and bacitracin resistance locus are rarely investigated in S. suis isolates. Here, we investigated a S. suis isolate carrying an optrA and a novel bacitracin resistance locus, which were co-located on a novel multiple antibiotic resistant ICESsu1112S. Our study suggests that more research is needed to access the real significance of ICEs that horizontally spread clinical important resistance genes.


Assuntos
Bacitracina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Linezolida/farmacologia , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Animais , Antibacterianos/farmacologia , China , Conjugação Genética , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Infecções Estreptocócicas , Streptococcus suis/isolamento & purificação , Suínos
17.
Microbiol Spectr ; 10(1): e0170621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171014

RESUMO

Two diverse conjugative plasmids can interact within bacterial cells. However, to the best of our knowledge, the interaction between blaCTX-M-bearing IncFII plasmid and mcr-1-carrying IncI2 plasmid colocated on the same bacterial host has not been reported. This study was initiated to explore the interaction and to analyze the reasons that these two plasmids are often coresident in multidrug-resistant Escherichia coli. To assess the interactions on plasmid stabilities, fitness costs, and transfer rates, we constructed two groups of isogenic derivatives, C600FII, C600I2, and C600FII+I2 of E. coli C600 and J53FII, J53I2, and J53FII+I2 of E. coli J53, respectively. We found that carriage of FII and I2 plasmids, independently and together, had not impaired the growth of the bacterial host. It was difficult for the single plasmid FII or I2 in E. coli C600 to reach stable persistence for a long time in an antibiotic-free environment, while the stability would be striking improved when they coresided. Meanwhile, plasmids FII and I2, whether together or apart, could notably enhance the fitness advantage of the host; moreover, E. coli coharboring plasmids FII and I2 presented more obvious fitness advantage than that carrying single plasmid FII. Coresident plasmids FII and I2 could accelerate horizontal cotransfer by conjugation. The transfer rates from a strain carrying coresident FII and I2 plasmids increased significantly when it mated with a recipient cell carrying one of them. Our findings highlight the advantages of coinhabitant FII and I2 plasmids in E. coli to drive the persistence and spread of plasmid-carried blaCTX-M and mcr-1 genes, although the molecular mechanisms of their coresidence warrant further study. IMPORTANCE More and more Enterobacteriaceae carry both blaCTX-M and mcr-1, which are usually located on IncFII-type and IncI2-type plasmids in the same bacterial host, respectively. However, the study on advantages of coresident plasmids in bacterial host is still sparse. Here, we investigated the stability, fitness cost, and cotransfer traits associated with coresident IncFII-type and IncI2-type plasmids in E. coli. Our results show that coinhabitant plasmids in E. coli are more stable, confer more fitness advantages, and are easier to transfer and cotransfer than a single plasmid IncFII or IncI2. Our findings confirm the advantages of coresident plasmids of blaCTX-M-bearing IncFII and mcr-1-bearing IncI2 in clinical E. coli, which will pose a serious threat to clinical therapy and public health.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia
18.
China CDC Wkly ; 3(47): 994-998, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34888114

RESUMO

WHAT IS ALREADY KNOWN ON THIS TOPIC?: Streptococcus suis (S. suis) is a zoonotic pathogen causing disease in humans and animals, and the emergence of its increased resistance to antimicrobial agents has become a significant challenge in many countries. WHAT IS ADDED BY THIS REPORT?: Using whole genome sequencing data to accurately predict antimicrobial resistance determinants, it was found that the prevalence of antimicrobial resistance genes was higher in the pig isolates of S. suis than in the human isolates and that the prevalence of these genes varied with serotype. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: The data regarding S. suis antimicrobial resistance will help guide rational drug use in the clinic to better protect the health of humans and animals.

19.
Microbiol Spectr ; 9(2): e0050321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612694

RESUMO

The aims of this study were to elucidate the role of IS1294 in plasmid reorganization and to analyze biological characteristics of cointegrates derived from different daughter plasmids. The genetic profiles of plasmids in Escherichia coli strain C21 and its transconjugants were characterized by conjugation, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern hybridization, whole-genome sequencing (WGS) analysis, and PCR. The traits of cointegrates were characterized by conjugation and stability assays. blaCTX-M-55-bearing IncI2 pC21-1 and nonresistant IncI1 pC21-3, as conjugative helper plasmids, were fused with nonconjugative rmtB-bearing IncN-X1 pC21-2, generating cointegrates pC21-F1 and pC21-F2. Similarly, pC21-1 and pC21-3 were fused with nonconjugative IncF33:A-:B- pHB37-2 from another E. coli strain to generate cointegrates pC21-F3 and pC21-F4 under experimental conditions. Four cointegrates were further conjugated into the E. coli strain J53 recipient at high conjugation frequencies, ranging from 2.8 × 10-3 to 3.2 × 10-2. The formation of pC21-F1 and pC21-F4 was the result of host- and IS1294-mediated reactions and occurred at high fusion frequencies of 9.9 × 10-4 and 2.1 × 10-4, respectively. Knockout of RecA resulted in a 100-fold decrease in the frequency of plasmid reorganization. The phenomenon of cointegrate pC21-F2 and its daughter plasmids coexisting in transconjugants was detected for the first time in plasmid stability experiments. IS26-orf-oqxAB was excised from cointegrate pC21-F2 through a circular intermediate at a very low frequency, which was experimentally observed. To the best of our knowledge, this is the first report of IS1294-mediated fusion between plasmids with different replicons. This study provides insight into the formation and evolution of cointegrate plasmids under different drug selection pressures, which can promote the dissemination of MDR plasmids. IMPORTANCE The increasing resistance to ß-lactams and aminoglycoside antibiotics, mainly due to extended-spectrum ß-lactamases (ESBLs) and 16S rRNA methylase genes, is becoming a serious problem in Gram-negative bacteria. Plasmids, as the vehicles for resistance gene capture and horizontal gene transfer, serve a key role in terms of antibiotic resistance emergence and transmission. IS26, present in many antibiotic-resistant plasmids from Gram-negative bacteria, plays a critical role in the spread, clustering, and reorganization of resistance determinant-encoding plasmids and in plasmid reorganization through replicative transposition mechanisms and homologous recombination. However, the role of IS1294, present in many MDR plasmids, in the formation of cointegrates remains unclear. Here, we investigated experimentally the intermolecular recombination of IS1294, which occurred with high frequencies and led to the formation of conjugative MDR cointegrates and facilitated the cotransfer of blaCTX-M-55 and rmtB, and we further uncovered the significance of IS1294 in the formation of cointegrates and the common features of IS1294-driven cointegration of plasmids.


Assuntos
Antibacterianos/farmacologia , Elementos de DNA Transponíveis , Escherichia coli/genética , Plasmídeos/genética , Conjugação Genética , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/metabolismo
20.
J Antimicrob Chemother ; 76(12): 3168-3174, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34499729

RESUMO

BACKGROUND: The increasing use of colistin causes a serious breach in our last line of defence against MDR Gram-negative pathogens. Our previous study showed that CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin. OBJECTIVES: To identify the mechanism of CpxAR and efflux pumps that synergistically enhance the susceptibility of S. Typhimurium to colistin. METHODS: A series of cpxR- and tolC-deleted mutants and a cpxR-complemented strain from a multidrug-susceptible standard strain of S. Typhimurium (JS) were generated in our previous study. Herein, we investigated the susceptibility of these strains to colistin through the broth microdilution method, time-kill curves and survival assays. Growth curves were measured by OD600 in LB broth, tryptone-soy broth (TSB) and M9-glucose (0.2%) minimal media. Finally, molecular mechanisms underlying the mode of action were elucidated by transcriptomic analysis. RESULTS: We found that in contrast to JS (0.8 mg/L), the MIC of colistin for JSΔtolC::kan showed a 16-fold decrease (0.05 mg/L). Notably, JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were associated with a 256-fold decrease (0.0031 mg/L) compared with JS. Growth curves identified that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR displayed a markedly lower growth rate and poorer adaptability. In addition, time-kill curves and survival assays showed that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were more susceptible to colistin. Lastly, double deletion of cpxR and tolC enhanced oxidative damage through promoting oxidative phosphorylation, the tricarboxylic acid (TCA) cycle and trimethylamine N-oxide (TMAO) respiration. CONCLUSIONS: Our findings revealed that double deletion of cpxR and tolC significantly increases the susceptibility of S. Typhimurium to colistin.


Assuntos
Colistina , Salmonella typhimurium , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Proteínas de Membrana Transportadoras/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...